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ABSTRACT

We present the design and evaluation of an 802.11-like wire-
less link layer protocol that obfuscates all transmitted bits
to increase privacy. This includes explicit identifiers such as
MAC addresses, the contents of management messages, and
other protocol fields that the existing 802.11 protocol re-
lies on to be sent in the clear. By obscuring these fields,
we greatly increase the difficulty of identifying or profil-
ing users from their transmissions in ways that are other-
wise straightforward. Our design, called SlyFi , is nearly
as efficient as existing schemes such as WPA for discovery,
link setup, and data delivery despite its heightened protec-
tions; transmission requires only symmetric key encryption
and reception requires a table lookup followed by symmetric
key decryption. Experiments using our implementation on
Atheros 802.11 drivers show that SlyFi can discover and as-
sociate with networks faster than 802.11 using WPA-PSK.
The overhead SlyFi introduces in packet delivery is only
slightly higher than that added by WPA-CCMP encryption
(10% vs. 3% decrease in throughput).

Categories and Subject Descriptors

C.2 [Computer Systems Organization]: Computer-Com-
munication Networks; C.2.1 [Computer-Communication

Networks]: Network Architecture and Design

General Terms

Design, Security
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privacy, anonymity, wireless, 802.11

1. INTRODUCTION
Wireless capabilities are rapidly spreading beyond mobile

computers to everyday consumer devices ranging from cell-
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phones and personal health monitors to game controllers
and digital cameras. This evolving wireless ecosystem is
increasingly pervasive and personal in its usage compared
to laptops, and it heightens privacy risks that are already
significant compared to wired networks. Wireless links are
more exposed than their wired counterparts because trans-
missions are broadcast and can be received by anyone within
radio range. Without sophisticated wiretapping hardware or
access to network cables, third parties that are not intended
recipients may eavesdrop on conversations using only com-
modity radios and off-the-shelf software. To counter this
threat, it is common practice to use standards such as WPA
for 802.11 to encrypt packet contents.

Unfortunately, even the best practices for data confiden-
tiality as used in 802.11 today leave users vulnerable to
straightforward attacks on their privacy that reveal who
they are and what they are doing to any party within ra-
dio range. For example, it is well-known that MAC ad-
dresses, which are sent in the clear with existing encryption
schemes, serve as handles that can be used to identify users
and track their locations [16, 18]. Even without MAC ad-
dresses, recent work has demonstrated that users can often
be identified and linked with confidential information such
as their location history using management information that
is sent in the clear [15, 22]. More generally, 802.11 facilitates
user tracking and inventorying attacks that are conceptually
identical to RFID threats [19], which have prompted much
public concern over privacy.

These attacks work because third parties can observe low-
level identifiers such as addresses and network names in
transmissions that map readily to high-level identifiers such
as identities. The key problem that this paper addresses
is the complete removal of explicit identifiers from wireless
transmissions for parties other than the intended recipients;
existing schemes obscure identifiers only within packet pay-
loads. By removing all identifiers, privacy is strengthened
because attacks that rely on explicit identifiers will fail.

To combat these attacks, other research has proposed pe-
riodically changing specific identifiers, e.g., that MAC ad-
dresses be changed every session or when idle [16, 17]. But
concealing specific fields leaves open the possibility of track-
ing and inventorying by other fields that have not been pro-
tected. Furthermore, even within a session, sequences of
encrypted packets, which remain linked by an explicit and
consistent address, can reveal sensitive information about
their contents. For example, a distinct pattern of packet



sizes and timings is sometimes sufficient to identify the keys
a user types [28], the web pages he views [30], the videos
he watches [26], the languages he speaks [33], and the ap-
plications he runs [34]. As far as we are aware, our work
is the first to provide a complete design and prototype for
removing all explicit identifiers from wireless links.

The obvious difficulty with simply removing identifiers is
that they play key roles in the efficient operation of exist-
ing protocols. For example, a destination address (802.11)
or connection identifier (WiMAX) allows a device to decide
whether it is the destination of a message by using a simple
compare operation. Mechanisms such as ARP that trans-
late between addresses at different layers rely on identifiers
that persist for significant periods of time. And the pro-
cess of service discovery and rendezvous, such as with an
available access point (AP), requires a service to announce
its existence with an explicit, recognizable identifier or for a
client to probe for it. Either way, the process relies on the
transmission of a service name explicitly.

This paper presents SlyFi , an 802.11-like protocol that
encrypts entire packets to remove explicit identifiers while
retaining efficiency comparable to 802.11 with WPA. No ex-
plicit information in SlyFi messages can be used by third
parties to link them together. We show that all features that
rely on identifiers—service discovery, packet filtering, and
address binding—can be supported without exposing them.
Different mechanisms are used for service discovery and sub-
sequent data transfers, but in both cases a device can deter-
mine whether it is the recipient of a message with lightweight
table look-ups. We have implemented SlyFi on commodity
802.11 NICs and our experiments show that SlyFi ’s perfor-
mance impact is modest. In particular, we show that a SlyFi

client can discover and associate with services even faster
than 802.11 with WPA using PSK authentication. SlyFi ’s
overhead results in a throughput degradation that is only
slightly greater than that of WPA with CCMP encryption
(10% vs. 3%).

The rest of this paper is organized as follows. §2 presents
the requirements of a solution and an overview of SlyFi . §3
presents the design of two main mechanisms it uses, while
§4 discusses practical details and our prototype implemen-
tation. §5 presents performance evaluation results. §6 dis-
cusses related work and §7 concludes.

2. PROBLEM AND SOLUTION OVERVIEW
Our goal is to build a wireless link layer protocol that al-

lows clients and services to communicate without exposing
identifiers to third parties. This section outlines the threat
model we consider. We then discuss our security require-
ments and the challenges in meeting them and present an
overview of SlyFi , an efficient identifier-concealing link layer
protocol based on 802.11.

2.1 Threat Model

Attack. The previous section outlined three types of at-
tacks enabled by low-level identifiers not obscured by ex-
isting security mechanisms: the inventorying, tracking, and
profiling of users and their devices. Users can be subjected
to these attacks without their knowledge because an adver-
sary can carry them out without being visibly or physically
present. In addition, users are vulnerable even when us-
ing the best existing security practices, such as WPA. Thus,

10 ms 100 ms 1 sec 1 min 1 hr

SIGCOMM 2004 1.4 3.2 7.6 24.7 80.1

OSDI 2006 4.6 9.0 20.6 60.8 221.3

UCSD 2006 2.4 7.1 17.9 76.6 176.6

Table 1—Mean number of devices that send or receive
802.11 data packets at different time intervals at two confer-
ences (SIGCOMM [25], OSDI [11]) and one office building
(UCSD [12]). Intervals with no data packets are ignored.
UCSD has observations from multiple monitors.

these attacks violate common assumptions about privacy.
The effectiveness of these attacks is dependent on an adver-
sary’s ability to link packets sent at different times to the
same device. The easiest way for adversaries to link packets
is by observing the same low-level identifier in each.

Thus, our goal is to limit two forms of linkability : First, in-
formation should not be provided in individual packets that
explicitly links the packets to the identities of the sender
or intended receiver. Second, to prevent the profiling, fin-
gerprinting, and tracking of sequences of related packets,
packets from the same sender should not be linkable to each
other, irrespective of whether any one of them may be linked
explicitly to its source. In other words, when there are k po-
tential devices and an adversary observes a packet, he should
only be able to infer that the packet is from (or to) one of
those k devices, not which one. Profiling a device’s packet
sequences would be more difficult even at short timescales
if many devices are active simultaneously. Table 1, which
shows the average number of active devices observed at dif-
ferent time intervals, shows that there are indeed many si-
multaneously active devices in three 802.11 traces.

Potential Victims. The aforementioned attacks are dam-
aging to both wireless clients, such as laptops, and wire-
less services, such as APs, particularly since the distinction
between client and service devices is becoming increasingly
blurred; e.g., a client game station sometimes provides wire-
less service to others as an ad hoc AP. Thus, we want to
limit the linkability of packets transmitted by both clients
and services.

We assume that clients and services have (possibly shared)
cryptographic keys prior to communication. These keys can
be obtained in the same way as in existing secure 802.11
and Bluetooth networks. For example, devices can lever-
age traditional credentials from trusted authorities (e.g., for
RADIUS authentication) or bootstrap symmetric keys us-
ing out-of-band pairing techniques [31]. We believe that
most private services will be known beforehand (e.g., a home
802.11 AP) and can bootstrap keys using these methods.
Nonetheless, in previous work [22] we also proposed meth-
ods to privately bootstrap keys with unknown services by
leveraging transitive trust relationships.

The mere possession of cryptographic keys does not imme-
diately yield satisfactory solutions, however, as clients and
services have limited computational resources. As a conse-
quence, solutions should not enable denial of service attacks
that exploit this limitation. For example, simply encrypt-
ing the entirety of a packet is not sufficient if a receiver can
not quickly determine whether it is the intended recipient
or not. This is because an adversary would then be able to
exhaust a device’s computational resources by broadcasting



“junk” packets that the device would expend a non-trivial
amount of resources to discard.

Adversary. We are concerned with limiting the packet
linking ability of third parties, i.e., parties other than the
original sender or intended recipient of those packets. For
example, packets sent between an 802.11 client and an 802.11
AP are exposed to anyone within radio range, but only the
client and service should be able to link them together. We
are not concerned with preventing the service from linking
together the client’s packets (or vice versa), as techniques
used to hide a client’s identity from a service in wired net-
works (e.g., [14]) are also applicable in wireless networks.

We assume adversaries have commodity 802.11 radios and
are able to observe all transmitted packets, but they are not
privy to the cryptographic keys that clients and services have
prior to communication. As with most practical systems,
we assume that adversaries are computationally bounded
and thus can not successfully attack standard cryptosystems
such as RSA, ElGamal, and AES.

Limitations. SlyFi ’s removal of low-level identifiers makes
it much more difficult for third parties to link packets to-
gether or to a particular user, thus improving privacy. None-
theless, packet sizes, packet timings, and physical layer in-
formation may still sometimes act as side channels that link
packets together. Defending against these attacks is outside
the scope of this paper. However, without explicit identi-
fiers linking together packets, it becomes a more difficult
probabilistic task to separate the transmissions of different
sources. Such attacks are less accessible as they usually re-
quire sophisticated attackers [32] or non-commodity hard-
ware [23].

2.2 Security Requirements
We want to be able to deliver a message from A to B with-

out identifiers, but still ensure that B can verify it was sent
by A. More formally, consider a procedure F that computes
c ← F (A, B, p), where A and B are the identities of the
sender and recipient, respectively, p is the original message
payload, and c is the result which A transmits. (Shared
cryptographic key state is an additional, implicit input to
F , but we omit it here for brevity.) We want F to have the
following four properties. We denote security properties in
this paper using small caps.

Strong unlinkability. To protect against tracking and
profiling attacks, a sequence of packets should not be link-
able. More formally, any party other than A or B that
receives c1 = F (A, B, p1) and c2 = F (A, B, p2) should not
be able to determine that the sender or receiver of c1 or
c2 are the same. In particular, this implies that c1 and c2

must not contain consistent identifiers. We note that some
packet types, such as discovery messages, are less vulnerable
to short-term profiling and thus only need to be unlinkable
at coarser timescales to prevent long-term tracking. Conse-
quently, we outline a relaxed version of this property in §3.3
to efficiently handle these packets.

Authenticity. To restrict the discovery of services to au-
thorized clients and prevent spoofing and man-in-the-middle
attacks, recipients should be able to verify a message’s source.
More formally, B should be able to verify that A was the
author of c and that it was constructed recently (to prevent
replay attacks).

Client AP

..
.

Probe Request

Probe Reply

Authentication Request

Authentication Reply

Association Request

Association Reply

Data

Client AP

..
.

Tryst(Probe Request)

Tryst(Probe Reply)

Tryst(Auth. Request)

Tryst (Auth. Reply)

Shroud(Assoc. Request)

Shroud(Assoc. Reply)

Shroud(Data)

802.11 SlyFi

time time

Acknowledgments
Shroud(Acks)

Figure 1—The SlyFi protocol.

Confidentiality. No party other than A or B should be
able to determine the contents of p. In contrast to exist-
ing wireless confidentiality schemes, not even fields and ad-
dresses in the header should be decipherable by third parties.

Message integrity. Finally, as with existing 802.11 se-
curity schemes, receivers should be able to detect if mes-
sages were tampered with by third parties. More formally,
B should be able to derive p from c and verify that it was
not altered after transmission.

2.3 Challenges
The principal approach to concealing 802.11 client iden-

tities has been to use MAC address pseudonyms [16, 18].
Pseudonym proposals do not meet our strong unlinkability
requirement because all packets sent under one pseudonym
are trivially linkable. Moreover, the use of pseudonyms does
not conceal other information in headers, such as capabili-
ties, that can be used to link packets together [21]. Further-
more, the proposals focus on data delivery alone, and do not
address important network functions, such as authentication
and service discovery.

Prior approaches are limited because meeting all our secu-
rity requirements while maintaining important wireless func-
tionality is nontrivial. Consistent destination addresses al-
low devices to quickly filter messages intended for others
so efficient data transport is difficult without them. More-
over, cryptographic authenticity is difficult to provide with-
out identifiers. Message recipients typically need to know
which cryptographic key to use to verify a message, and it is
hard to tell the recipient which one without explicitly iden-
tifying it. Finally, removing identifiers completely from the
process of service discovery is hard because wireless clients
and services typically rendezvous by broadcasting an agreed
upon identifier. A service might be willing to expose its
identifier through announcements to save potential clients
from having to expose it in probes. No such straightforward
solution exists to conceal both client and service identities.

2.4 System Overview
In light of the shortcomings of existing solutions, we in-

troduce the SlyFi protocol that meets our security require-



ments using two identity-concealing mechanisms, Tryst and
Shroud, while providing functionality similar to 802.11. Be-
fore describing these mechanisms, we first give an overview
of SlyFi in this section.

The SlyFi link layer is designed to replace 802.11 for man-
aged wireless connectivity between clients and APs. The pri-
vacy protecting mechanisms of the protocol explicitly pro-
tect all bits transmitted by the link layer. A client wishing
to join and send data to a SlyFi network sends a progression
of messages similar to 802.11 (Figure 1). Instead of sending
these messages in the clear, they are encapsulated by the
two identity-hiding mechanisms we describe in §3.

A client first transmits probes, encapsulated by Tryst, to
discover nearby APs it is authorized to use. A probe is
encrypted such that: 1) only the client and the networks
named in the probe can learn the probe’s source, destination,
and contents, and 2) messages encapsulated for a particular
SlyFi AP sent at different times cannot be linked by their
contents. An AP that receives a probe verifies that it was
created by an authorized user and sends an encrypted reply,
indicating its presence to that client. If the client wishes
to establish a link to the AP, it sends an authentication
request, also encapsulated by Tryst, containing session in-
formation including keys for subsequent data transmission,
which are used to bootstrap Shroud. Obviously, SlyFi APs
cannot send clear-text beacons if they wish to protect ser-
vice identities. However, they may do so if they wish to
announce themselves publicly. Such a public announcement
could immediately be followed by a confidential authentica-
tion request from an interested client, and thus would not
compromise client privacy.

After a link has been established by an authentication re-
sponse, Shroud is used to conceal the addresses and contents
of future messages delivered on the link. An eavesdropper
can not use the contents of any two messages protected by
Shroud to link them to the same sender or receiver.

Both Tryst and Shroud essentially encrypt the entire con-
tents of each message, including addresses normally found
in the header. The essential differences between them arise
due to the different requirements of discovery, link establish-
ment, and data transfer.

3. IDENTIFIER-FREE MECHANISMS
Identifiers are used in wireless protocols for two general

functions: 1) as a handle by which to discover a service
and establish a link to it, and 2) to address packets on
a link and allow unintended recipients to ignore packets
efficiently. Tryst and Shroud address each of these func-
tions, respectively. To motivate our mechanisms, we first
describe two straw man mechanisms that meet our security
requirements, but are inefficient. We then discuss Tryst and
Shroud, which are enabled by minor relaxations of these
requirements or additional assumptions made possible by
their intended uses. We conclude the section by discussing
how SlyFi can still support other protocol functions, such
as higher layer binding.

To illustrate each mechanism we consider the scenario
when A sends a message p to B. Each mechanism con-
sists of three key elements: the bootstrapping of crypto-
graphic keys that the sender and receiver require to com-
pute the procedure F (described in §2.2); the construction

of c ← F (A, B, p) by the sender; and the message filtering

by a receiver to determine if c is intended for him.

3.1 Straw Man: Public Key Mechanism
We first sketch public key, a mechanism based on a pro-

tocol that Abadi and Fournet [7] prove meet the aforemen-
tioned security requirements.

Bootstrapping. This mechanism assumes that A and B
each have a public/private key pair and each have the public
keys of the other.

Construction. We sketch this mechanism here, but re-
fer the reader to the first protocol discussed in [7] for de-
tails. To provide authenticity, A digitally signs the state-
ment s = {A, B, T} where T is the current time. A message
header is constructed as an encryption of s and the digi-
tal signature, using B’s public key. By using a public key
encryption scheme that does not reveal which key is used,
such as ElGamal [9], identities of neither sender nor intended
recipient are revealed.1 In addition, this achieves strong un-
linkability because the ElGamal encryption scheme is ran-
domized so each encrypted header appears random. The
payload can be encrypted via conventional means (e.g., as
described later in §3.3).

Message filtering. When B receives a message, he will
attempt to decrypt this header. If the decryption fails (i.e.,
the result does not include the statement {j, B, T}, for a
known identity j), the message is not intended for B and
can be discarded. If decryption succeeds, B then checks
the signature and the time to verify that the message was
recently generated by j before accepting it.

Although this protocol achieves the security properties we
desire, it is slow because it uses public key cryptography. In
particular, on AP and consumer electronics hardware, a sin-
gle private key decryption can take over 100 milliseconds—
several orders of magnitude greater than the time required
to transmit the message (see §5). Since B must attempt to
decrypt the header for every message he receives whether he
is the intended recipient or not, he can be backlogged just
by processing ambient background traffic.

3.2 Straw Man: Symmetric Key Mechanism
Next we sketch symmetric key, a similar mechanism based

on symmetric keys that addresses this pitfall.

Bootstrapping. This mechanism assumes that A and B
share a symmetric key.

Construction. Using symmetric keys shared only between
A and B, we can use a construction intuitively similar to
public key. A encrypts the statement s using symmetric
encryption such as AES-CBC. We can omit A and B from s
since it is implied by the use of their symmetric key. A then
computes a message authentication code (MAC) over the
encrypted value so B can verify its authenticity. A random
initialization vector (IV) is used so that the resulting cipher
text and MAC appear random and thus are unlinkable to
any other message.

Message filtering. Upon receipt of a message, B verifies
the MAC in the header using the same key A used to con-
struct the message. If the MAC does not verify, then this
message is not for B and he can discard it.

1In practice, we would still use RSA for faster signatures;
we just require each party to have both ElGamal and RSA
key pairs.



Symbol Definition

I The length of each Tryst time interval.

T, T0, Ti Respectively, the current time, the time
Tryst keys were bootstrapped, and the start
of time interval i: T0 + i · I.

kp A one-time use key for encrypting a payload.

kEnc
AB , kMAC

AB , kaddr
AB

Long-term keys to encrypt, MAC, and com-
pute addresses for Tryst messages sent from
A to B.

kEnc
s:AB , kMAC

s:AB
Session keys to encrypt and MAC Shroud
messages sent from A to B.

AESk (b) Encipher single 128-bit block b with key k

using the AES cipher.

AES-CBCk,i (m) Encrypt m with symmetric key k and 128
bit IV i using the AES cipher in CBC mode.

AES-CMACk (m) Construct 128-bit message authentication
code (MAC) of m with key k using AES-
CMAC [29].

SHA1128 (m) Return first 128 bits of a cryptographic hash
of m.

Table 2—Cryptographic terminology used in §3.3–§4. All
keys are 128 bits. When a key k is only used once, an IV
is not required for AES-CBCk,i (m), so we abbreviate it as
AES-CBCk (m). We use PKCS5 padding for m when it is of
variable length.

Of course, since the message does not indicate to B which
key was used to generate the MAC—indeed it cannot, or it
will no longer be unlinkable—and B has a symmetric key
for each client from whom he can receive messages, B must
try all these keys to verify the MAC. There is locality when
keys are used (e.g., A may know that he expects a reply
from B after sending a message to him) so we can sort keys
in most-recently-used order, but, for messages not intended
for B, he must try all keys before discarding them. Thus,
filtering is inefficient for clients or APs that have many keys.

3.3 Discovery and Binding: Tryst
We now describe Tryst, the mechanism we use for trans-

mitting discovery and binding messages such as 802.11 probes
and authentication messages. Tryst builds upon the symmet-

ric key straw man, but leverages the following properties of
these messages in order to enable efficient message process-
ing:

Infrequent Communication. Individual devices
send discovery and binding messages infrequently.
For example, 802.11 clients send probes only when
they are searching for an AP and send authenti-
cation messages only at the beginning of a session
or when roaming between APs.

Narrow Interface. Unlike data packets, which
can contain arbitrary contents, there are very
few different messages that are used for discov-
ery and binding. Thus, it is unlikely that their
evolution at short time scales exposes many sen-
sitive side channels of information when individ-
ual messages are not decipherable. It is only the
ability to link these messages together at long
time scales (e.g., hours or days) that threatens
location privacy.

Based on these two observations, we define a relaxed ver-
sion of the strong unlinkability property:

Long-term unlinkability. Let t(m) be the time a mes-
sage m was generated. Any party other than A or B that
receives c1 = F (A, B, p1) and c2 = F (A, B, p2) should not
be able to determine that the sender or receiver of c1 or c2

were the same if |t(c2)− t(c1)| > I, for some time interval I.
In practice, I would be several minutes and may be different
for each client-service relationship.

Tryst achieves this relaxed form of unlinkability, which is
sufficient for discovery and binding messages because very
few are likely to be generated during any given interval I.
Even if an adversary is able to force multiple discovery mes-
sages to be generated during one interval, e.g., by jamming
the channel to force all clients to reassociate, the ability to
link them together is unlikely to be threatening.

For clarity, we list the cryptographic terminology we use
in the subsequent description in Table 2.

Bootstrapping. Similar to symmetric key, A and B each
have symmetric keys kEnc

AB , kMAC
AB , kaddr

AB for constructing mes-
sages from A to B (and another set of keys for B to A). They
also remember the time they exchanged these keys as T0.

Temporary unlinkable addresses. A client A and a
service B that share a symmetric key can independently
compute the same sequence of unlinkable addresses and thus
will at any given time know which address to use to send
messages to the other. Specifically:

addri
AB = AESkaddr

AB
(i) , where i = ⌊(T − T0)/I⌋

In other words, addri
AB is a function of the ith time interval

after key negotiation. The crucial property we leverage is
that for any two values AESk1 (i1) and AESk2 (i2) where i1 6=
i2, it is intractable for a third party to determine whether
k1 = k2, even if i1 and i2 are known. Thus, these addresses
are unlinkable without knowledge of kaddr

AB .
In practice, B computes addri

AB once at time Ti = T0 +
i · I. B maintains a hash table containing the addresses for
messages he might receive. At time Ti, he clears the table
and inserts the key-value pair (addri

jB, j) for each identity
j he has keys for, so that he can anticipate messages sent
with these addresses and determine that he should use j’s
keys to process them. When A wants to send a message to
B at time T , he also computes addri

AB . §4.1 discusses how
we deal with clock skew.

Construction. Tryst(A, B, p) is computed as follows (Fig-
ure 2):

1. Generate a random key kp.

2. header ← {s, mac}, where:

s = {addri
AB , AESkEnc

AB
(kp)},

mac = AES-CMACkMAC
AB

(s) .

header proves to B that A is the sender and B the
receiver because only A and B have kEnc

AB and kMAC
AB .

Moreover, it proves to B that it was constructed near
the current time T because addri

AB is a cryptographic
function of T . This provides authenticity.

To third parties, mac appears to be random because
it is computed over the encryption of random key kp,
so neither it nor the encipherment of kp can link it to



s = {addri
AB , AESkEnc

AB
(kp)} mac = AES-CMACkMAC

AB
(s) etext = AES-CBCkp1

(p) emac = AES-CMACkp2
(etext)

32 bytes 16 bytes variable 16 bytes

Figure 2—Tryst packet format.

other messages. addri
AB is sent “in the clear” and will

be used in all messages sent during time interval Ti,
but addri1

AB and addri2
AB for any i1 6= i2 are unlinkable,

thus providing long-term unlinkability.

3. ctext← {etext, emac}, where:

etext = AES-CBCkp1
(p) ,

emac = AES-CMACkp2
(etext) .

kp1 and kp2 are pseudo-random keys derived from kp

(e.g., kp1 = kp and kp2 = SHA1128 (kp)). ctext is an
encryption of the payload p along with a MAC which,
given kp, verifies that the payload was not altered dur-
ing transmission. We derive two keys from kp so that
different keys are used for encryption and MAC. Since
kp is random, ctext will be different from previous mes-
sages even when an identical payload p was sent before.

4. c← {header, ctext}.

The overhead (64–80 bytes per message) is acceptable
since discovery and binding messages are sent infrequently.

Message filtering. Upon reception of such a message,
B simply checks his hash table to determine if he has an
address addri

AB . If he does, it will be associated with the
keys for A, which can be used to verify and decrypt the
header. If not, he can discard the message. Once header
is decrypted, he obtains kp, which can be used to decrypt
and verify ctext to retrieve the original p. In contrast to the
straw man mechanisms, this protocol enables devices to dis-
card messages not intended for them efficiently, using hash
table lookups instead of costly cryptographic operations.

3.4 Data Transport: Shroud
Tryst is insufficient for identifier-free data transport be-

cause data messages are neither infrequent nor do they have
a narrow interface. Thus, to defend against side-channel
analysis, we want strong unlinkability rather than just long-
term unlinkability. Shroud maintains this property efficiently
by leveraging a key assumption about data transport:

Connected Communication. Whereas discovery
messages are often sent at times when they will
not be received, data messages are only sent after
a link has been established. Thus, a sender and
receiver can assume that, barring message loss,
their messages will be received by their intended
recipient.

In effect, this assumption enables Shroud to compute a se-
quence of unlinkable addresses on a per packet basis, as we
will describe shortly.

Bootstrapping. We bootstrap Shroud with random ses-
sion keys kEnc

s:AB , kMAC
s:AB for messages from A to B. These

keys are exchanged in SlyFi ’s authentication messages (see
Figure 1) and thus are protected by Tryst. For reasons that

we discuss in the construction below, the same key kEnc
s:AB

can be used for both address computation and encryption.

Per-packet unlinkable addresses. The only design choice
in Tryst that sacrifices strong unlinkability is the use of the
same addri

AB for all packets during time interval i. Thus,
we can essentially use Tryst, provided that we can compute
addresses addri

AB per packet rather than per time interval.
To do this in Shroud, addri

AB is computed as a function of
the ith transmission since link establishment:

addri
AB = AESkEnc

s:AB
(i) , where i = transmission number

Since a connection has been established, B will receive every
packet sent by A on this link barring message loss, and,
hence, B only needs to compute address i+1 after the receipt
of message i; i.e., B computes the address he expects in the
next message.

Of course, message loss in wireless networks is common, so
we would like to be able to tolerate the loss of w consecutive
losses for some w. Thus, on receipt of message i, a receiver
computes the (i + 1)th to (i + w)th addresses and inserts
them all into its hash table (removing all addresses j ≤
i). Note that, except for the first message received (e.g.,
the association request or reply in SlyFi), which requires
the computation of w addresses, only one additional address
needs to be computed for each subsequent packet sent to
B, unless there are message losses; B performs no address
computation for packets destined for other devices that it
overhears. §4.2 discusses how we choose w and perform link
layer retransmissions.

Construction. With per-packet unlinkable addresses, we
could use the Tryst construction and achieve the desired
security properties and filter packets efficiently. However,
we can make additional optimizations. Shroud(A,B, p) is
computed as follows (Figure 3):

1. header ← addri
AB .

Unlike in Tryst, no Shroud address will ever appear
in two different messages; thus no one can successfully
record and replay them. As a consequence, addri

AB

itself proves to B that A sent the message to B and
that it was message transmission i, which B expects.
This provides authenticity. Each message will have a
different address and addresses are strongly unlinkable.

2. ctext← {etext, emac}, where:

etext = AES-CBCkEnc
s:AB

,header (p) ,

emac = AES-CMACkMAC
s:AB

(header, etext) .

In Tryst, we use a random key to perform the en-
cryption to ensure that the encrypted payload and
MAC are unlinkable to previous messages even if their
contents are the same. Since each Shroud address is
pseudo-random and is used only once, header effec-
tively serves as a random nonce that we can use as
an IV to the encryption of the payload. This ensures



header = addri
AB etext = AES-CBCkEnc

s:AB
,header (p) emac = AES-CMACkMAC

s:AB
(header, etext)

16 bytes variable 16 bytes

Figure 3—Shroud packet format.

that etext is unlinkable to previous messages even if
their contents are the same and we use the same key
kEnc

s:AB for encryption. Similarly, we include header in
the computation of emac to ensure that it is unlinkable
to previous messages even if p is null.

3. c← {header, ctext}.

We note that addri
AB implies the Ethernet addresses in

p so they can be removed. Therefore, Shroud’s additional
32 bytes of overhead can, in practice, be reduced to only
15–30 bytes per packet, depending on the 1–16 bytes the
PKCS5 padding scheme adds to align etext to 16-byte AES
blocks.

Message filtering. As in Tryst, B determines whether
a message is for him by looking up addri

AB in the hash ta-
ble containing his precomputed addresses. In fact, since the
address is located in the same position in both Tryst and
Shroud packets, there is no need to distinguish the two mes-
sage types and a single hash table can be shared by both.
The value associated with each address key in the hash table
will indicate whether it should be demultiplexed to Tryst or
Shroud.

3.5 Other Protocol Functions
Tryst and Shroud make the crucial elements of a link layer

protocol—discovery, binding, and data transport—identifier-
free, but other protocol functions must be supported as well.
In this section, we explain how SlyFi can support these func-
tions without introducing identifiers.

Broadcast. Shroud supports identifier-free broadcast trans-
missions in managed mode. Broadcasted frames are en-
crypted with a key and sequence number that are shared by
the AP and all clients on the local network. As in 802.11’s
managed mode, a client forwards frames to the AP that it
wishes the AP to broadcast. In Shroud, the transmission
to the AP is protected by the per-client shared key used for
unicast transmissions. (A client optionally may divulge his
identity to all associated stations by including his source ad-
dress.) Upon reception at the AP, the frame is decrypted
and then re-encrypted with the shared broadcast key. The
shared key and current sequence number are managed by
the AP and conveyed to each of its clients during associa-
tion. Although SlyFi currently does not support broadcast
key revocation, we believe we can apply a scheme similar to
that of 802.11i [6]; this is is a topic of future work.

Binding to higher layer identifiers. There is often a
need to bind higher layer names to link layer addresses. For
example, ARP binds Ethernet addresses to IP addresses.
Obviously, we do not want to have to re-establish this bind-
ing for every Shroud address change. Instead, we have the
AP negotiate with each client a pseudonym address that
remains consistent for that session, but that is not sent in
actual messages. The client informs the AP of its IP to
pseudonym binding whenever its IP address changes. Thus,
the AP can answer all ARPs.

Announcement. Beacons are broadcasted in the clear to
announce an 802.11 AP. While SlyFi does not prevent bea-
cons, an AP that wants to hide its presence obviously cannot
use them. To discover APs in SlyFi , a client must have the
necessary Tryst keys to probe for it. We do not believe this
is a hindrance, since existing secure 802.11 networks already
require secure out-of-band channels to exchange keys before
association.

Time synchronization. Beacons are also used to convey
timestamps so that clients and APs can synchronize their
clocks. With synchronized clocks, clients need only turn
on their radios at designated times to receive packets when
operating in low power modes. Since only clients on the
local network need to synchronize their clocks, this informa-
tion can be encrypted using the broadcast encryption key
described above.

Roaming. Clients sometimes use probes or beacons after
association to search for better APs to roam to. Using Tryst
to send these probes might be expensive if a client sends
them frequently. However, these APs are usually in the
same administrative domain and thus could share a broad-
cast key, which could be used to encrypt these messages
instead of using Tryst. In addition, Shroud session state
could be migrated between APs in advance, similar to how
WPA pre-authentication is performed.

Coexistence. Our implementation of SlyFi can coexist
with normal 802.11 devices because we encapsulate SlyFi

messages in management frames that normal 802.11 devices
ignore (see §4.3). The medium access protocol is unchanged.2

Thus, SlyFi can be deployed incrementally. In a mixed envi-
ronment, a SlyFi-enabled client can first search for a SlyFi-
enabled AP using Tryst probes. If no such AP is found, then
a client willing to fall-back to a normal 802.11 AP can listen
for beacons and associate normally.

4. IMPLEMENTATION DETAILS
This section discusses practical considerations involved in

implementing Tryst, Shroud, and our SlyFi prototype.

4.1 Tryst: Practical Considerations

Clock skew. In practice A and B will not have per-
fectly synchronized clocks. To allow for clock skew up to
k · I between devices, B should anticipate the addresses
that may be used for any messages sent in the time range
[Ti−k, Ti+k] at time Ti. Thus, he also inserts (or keeps)
addri−k

jB , addri−k+1
jB , . . . , addri+k

jB into the table for all iden-
tities j for which he has keys. Note that messages sent by A
will still only use the address addri

jB for one time interval of

2 We do not yet support RTS/CTS because our software
implementation is not fast enough to perform filtering at
the timescale required, but we note that RTS/CTS is rarely
used in actual managed networks.



length I. B will simply accept messages with that address
for longer.

Scoped broadcast. A client may want to send the same
discovery message to multiple services (e.g., to discover any
one of them). To do this, A constructs one header for each
intended recipient, but includes the same kp in each header;
e.g., he sends {header1, . . . , headerN, ctext}. Hence, any
party that can interpret any one header can obtain kp and
decrypt the payload. However, each party can only interpret
the header intended for them, so the identities of the other
parties remain obscured.

Forward security. One concern is that kaddr
AB is stored

for a long time and if it is compromised, an adversary could
compute the addresses of all messages that A ever sent to
B. We mitigate this risk by computing a new key each day
using a forward-secure pseudorandom bit generator [10]; i.e.,

the key for day j: k
addr(j)
AB ← SHA1128

“

k
addr(j−1)
AB

”

. Both A

and B discard the old key and use the new key for computing
addresses. The address computation remains the same, but

an adversary that obtains k
addr(j)
AB would only be able to

compute addresses for days j and after.

Side-channel attacks. If an adversary knows the sender
or intended recipient of a Tryst probe, the presence or ab-
sence of a reply may reveal additional information. For ex-
ample, an adversary can replay a probe at another location
to see if the recipient responds. However, these attacks can
only be performed for the short time interval that an ad-
dress is valid and can be mitigated by simple countermea-
sures. For example, since an adversary cannot distinguish
the content of a response from any other message, if ran-
dom delays were added to probe responses, an adversary
might lose them in the noise of frequent background traffic.
In addition, receivers can cache valid probe and authenti-
cation requests that they receive for the duration they are
valid and ignore replays of those messages. We did not im-
plement these countermeasures since these attacks assume
adversaries already know the sender or intended recipient
of a message, which can not be learned from the message’s
contents alone.

4.2 Shroud: Practical Considerations

Choosing w. w determines the number of consecutive
packet losses Shroud can endure. In practice, burst losses of
more than 50 packets are extremely rare on usable links [24]
so we use w = 50. A larger burst loss will result in a higher
level timeout and require re-establishing the link. The over-
head required to maintain these addresses is not prohibitive;
even a heavily loaded AP with 256 clients (the max sup-
ported by the standard MadWifi driver [3]) requires only
1MB. Most clients, which only have one association at a
time, could easily check message addresses in hardware with
no more delay or energy than existing NICs. We show in
§5.4 that even software filtering incurs little overhead.

Acknowledgments. Every unicast 802.11 data packet is
acknowledged by the receiver to manage message loss. In
principle, link-layer acknowledgments can simply acknowl-
edge the address of the received Shroud packet, since the
sender knows the last address used. However, our current
implementation is in software and thus is unable to send this
ack within the 16 microseconds allotted to it. Therefore, we

currently use software acks that selectively acknowledge cu-
mulative windows of data packets. Each acknowledgment
and message retry is processed anew by Shroud.

4.3 Prototype Implementation
We implemented SlyFi in C++ using the Click Modu-

lar Router [20], incorporating Tryst and Shroud with its
existing 802.11 implementation (which is by the authors of
Roofnet [4]). Since existing 802.11 NICs will not send frames
without proper 802.11 headers, each Tryst or Shroud mes-
sage is encapsulated in an “anonymous” 802.11 header, i.e.,
one with constant fields and addresses. NICs are placed in
promiscuous mode so that they receive all these frames and
perform filtering in software. We use the cryptographic rou-
tines in libgcrypt [2] and ran our software as a Linux kernel
module.

5. PERFORMANCE EVALUATION
We evaluate two key areas. First, we examine how quickly

we can discover and set up a link with Tryst. A quick link
establishment improves usability both by reducing the de-
lay before communication can begin and by preventing no-
ticeable interruptions when roaming between APs. Second,
we examine the performance penalty incurred when using
Shroud to deliver data traffic. In general, we find that SlyFi

performs comparably to 802.11 using WPA and substan-
tially out-performs the straw man mechanisms we discussed.

5.1 Comparison Protocols
We compare our SlyFi implementation to the following

baseline protocols and alternatives:

wifi-open. The baseline implementation of 802.11 without
WEP or WPA in Click. SlyFi uses the same components,
simply encapsulating the original packets where needed, al-
lowing us to make a direct comparison to a software imple-
mentation without our mechanisms.

wifi-open-driver. The 802.11 implementation in the Mad-
Wifi driver/firmware [3]. We compare to this second baseline
since wifi-open has additional overhead when used for data
transport, which we discuss in §5.4. Neither wifi-open nor
wifi-open-driver meet any of our security requirements.

wifi-wpa. A baseline implementation of 802.11 with WPA,
which provides authentication, message integrity, and con-
fidentiality, but not unlinkability as messages still include
Ethernet addresses and network names. We use the stan-
dard WPA client and AP implementations on Linux [1],
which run on top of wifi-open-driver, so wifi-wpa does not
incur the overhead mentioned above. We run wifi-wpa us-
ing PSK user authentication and CCMP encryption. PSK
is the most widely used standard in small private networks.
CCMP is comparable to SlyFi ’s payload encryption, as both
are built around AES. However, wifi-wpa performs AES op-
erations using dedicated hardware on the 802.11 NIC, while
SlyFi performs it in software. To compensate, we also eval-
uate SlyFi with simulated hardware we discuss in §5.4.

public key. The straw man alternative to Tryst for discovery
and link setup discussed in §3.1.

symmetric key. The other straw man alternative to Tryst
discussed in §3.2. public key and symmetric key still use
Shroud once a link is established (i.e., they only replace
Tryst in Figure 1).



armknecht. A previous 802.11 frame encryption proposal [8]
that is an alternative to Shroud for data transport.3 Like
Shroud, armknecht computes per-packet addresses, but only
for the next packet it expects, so it would perform compara-
bly when there is no packet loss or competing traffic. How-
ever, a receiver that receives a message without one of its
known addresses performs a number of cryptographic op-
erations comparable to symmetric key before discarding it.
This is because it treats a packet it does not have an ad-
dress for as an indication of potential loss and uses these
operations to try to recover from it. In contrast, Shroud
simply precomputes more addresses to manage loss.

5.2 Setup
We deploy these protocols on a number of Soekris net4801

low-power devices [5]. These devices have hardware com-
parable to common 802.11 APs and embedded consumer
devices. While laptops have more powerful hardware, we
demonstrate that our mechanisms are usable even on more
constrained devices. In our experiments, we designate each
device as either an AP or a client.

Each device has a 266 Mhz 586-class Geode processor,
256 MB of RAM, 1 GB of flash storage, and one CM9
Atheros 802.11a/b/g miniPCI card. Each device runs a min-
imal version of Linux 2.6.16.13. 802.11 frames are sent and
received from a raw 802.11 radiotap device created by the
standard MadWifi driver. We operate on 802.11a channel
40 to avoid interference from more common 802.11b/g de-
vices. To make a fair comparison, management frames in
all protocols are transmitted at the base rate (6Mbps), as
is dictated by the 802.11 standard, while data frames are
transmitted at the peak rate (54Mbps).

5.3 Discovery and Link Setup Performance
To evaluate how long a client would need wait before it

can start transferring data, we measure the link setup time,
defined as the delay between when a client begins probing
for APs and when it can deliver packets on the established
link. In all the protocols except for wifi-wpa, packets can be
delivered once an association response message is received
(see Figure 1). wifi-wpa has an additional key negotiation
phase after association.

The parameters that impact link setup time are: the num-
ber of client accounts on an AP, the number of networks
that each client probes for, and the amount of background
probing traffic that is overheard by APs and clients. Our re-
sults show that, in contrast to public key and symmetric key,
Tryst has faster link setup times than wifi-wpa and scales as
gracefully as wifi-open when varying each of these parame-
ters. Moreover, the cost of periodically computing addresses
is trivial. Unless otherwise indicated, each data point pre-
sented in this section is the mean of 30 trials.

Keys per service. An AP maintains one key for each
client it has an account for, and the total number of keys
can impact link setup time. Real networks manage various
numbers of client accounts; e.g., home networks will likely
have less than a dozen, while the wireless network at the
Intel Research lablets, a fairly small organization, has 721.
Carnegie Mellon University’s wireless network, which may
be representative of a large organization, has 36,837 at the
time of this writing.

3Our implementation uses AES as the cipher.
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Figure 4—Association delay as the number of keys per AP
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standard deviation.
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Figure 5—CDF of the number of unique network names
probed for by each client in three empirical 802.11 traces.

Figure 4 shows the link setup time for a client that sends
one probe in search of a nearby AP as we vary the number of
keys per AP. Before each probe, the AP has its keys sorted
in random order, and thus, the performance of the symmetric

key protocol degrades with the number of keys, since it must
check a discovery message against all keys until it finds one
that successfully validates the MAC on the header. The
other protocols have setup times that are independent of
the number of keys per AP. Note however, that the public

key protocol is still more expensive than all the others, even
when the AP has 10,000 keys. Furthermore, although Tryst
imposes some overhead over the wifi-open protocol, it has
link setup times that are less than wifi-wpa and that, at
∼15 ms, are below the variance in Internet round trip times.

Probes per client. Since private APs cannot send bea-
cons, a client may need to probe for several different net-
works to figure out which one is present. In 802.11, these
probes usually contain the names of networks with which
the client has previously associated. Figure 5 shows a cu-
mulative distribution function of the number of unique net-
work names probed for by clients in three wireless traces
(described in Table 1). While most users probe for a small
number of networks, at least 4% of users in all traces probe
for more than 10 and some probe for more than 100.4 There-

4Users in the SIGCOMM trace probed for more networks
because each SIGCOMM AP had a different network name
and the network often was unavailable, prompting clients to
send probes for names deeper into their list of networks. We
ignored broadcast and random network names.
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Figure 6—Link setup time as the number of probes each
client sends varies. The AP has 500 keys. Error bars indicate
one standard deviation.

probing openauth associate wpa-key total

public key 886.1 895.2 146.2 NA 1927.6

symmetric key 120.2 8.6 6.9 NA 135.6

tryst 3.3 5.1 6.2 NA 14.5

wifi-open 1.4 1.5 2.2 NA 5.1

wifi-wpa 0.1 6.9 0.8 57.5 65.3

Table 3—Breakdown of link setup time for a client that
probes for 5 different networks and an AP with 500 keys.
Times are in milliseconds. Each phase corresponds to re-
quest/response messages in Figure 1, except wpa-key, which
involves 2 round trips after association to derive session keys
in wifi-wpa.

fore, it is important that link setup time does not grow sub-
stantially with the number of probes.

Figure 6 shows the link setup time as a function of the
number of different probes a client sends, which are sent as
fast as possible. The number of keys per AP is fixed at 500.
For a fair comparison, Tryst sends a separate message for
each probe instead of using scoped broadcast (discussed in
§3.3). We omit the line for wifi-wpa because the standard
probing behavior is different and incurs more delays. If it
also sent probes as fast as possible, it would have scaling
behavior similar to the wifi-open line since the probes they
send are the same.

Although all protocols scale with the number of probes
sent, as there is overhead in processing them and limited
bandwidth in the medium, the slopes of the two straw man
protocols are steeper, indicating that they incur more over-
head per probe. The slopes of the Tryst and wifi-open lines
are similar, and both have setup times of at most ∼50 ms
even when clients send 50 probes.

Performance breakdown. Table 3 shows the breakdown
of link setup time for clients that send 5 probes and APs
with 500 keys. The public key protocol spends most of its
time in the first two phases, since it must process most pub-
lic key encryptions, decryptions, and signature checks here.
These operations are two orders of magnitude slower than
the symmetric key analogs. Nonetheless, the symmetric key

protocol still spends significant time in the probing phase,
because when the AP first receives a probe, it may try to
verify the MAC with all its keys. Subsequent phases are
faster because both the client and the AP re-sort their keys
in MRU order, so the expected number of keys they must
try before finding the right one decreases appreciably.
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Figure 7—CDF of background probe and authentication
messages observed each second where discovery was taking
place in each of three 802.11 traces. We only count times
when there was at least one probe (i.e., times when discovery
was taking place).

Tryst has similar performance to the symmetric key pro-
tocol during the last three phases because the number of
cryptographic operations is identical. However, the first
phase is much faster because the AP looks up the address in
a hash table to determine which key to use to verify the mes-
sage. The open authentication and association phases take
slightly longer because they involve computing the initial w
Shroud addresses. Even when performing these operations,
in addition to standard 802.11 processing, the time it takes
for SlyFi using Tryst to setup a link is less than 10 ms more
than that of wifi-open, which provides no authentication or
confidentiality. Moreover, it is faster than wifi-wpa.5

Note that if a client did not know the particular wireless
frequency a network was located on, it would spend more
time in the probing phase because it would have to wait on
each channel to see if a probe response arrives. This waiting
time is configured to be 20–200 ms in 802.11.

Background probing traffic. The previous experiments
assumed no ambient background traffic during the link setup
process. However, due to the ad hoc nature of real wireless
deployments, stations and APs often overhear messages that
are not destined for them. For example, Figure 7 shows
the rate of probe requests, responses, and authentication
messages observed by one monitoring point.6 Although the
ambient message rate is generally fairly low, there are times
when the rate is over 100 messages per second, due to many
clients performing discovery at once. Thus, it is crucial that
clients and APs be able to discard these messages quickly.

To evaluate how well SlyFi can manage background probe
and authentication messages, we examine a client’s link setup
time as a function of such traffic. To do this, we introduce
a third machine that sends background messages at a spec-
ified rate destined neither for the client or the AP. These
background messages are encapsulated in the protocols we
compare, but we precompute them so that their generation

5We note that wifi-wpa incurs an unnecessary delay in the
open authentication phase, but since the bulk of the time
is spent in wpa-key for key computation and exchange, re-
moving this delay would not change the ranking of the total
link setup times.
6The UCSD trace merged observations from multiple mon-
itoring points, so it observes more traffic at any given time.
The OSDI trace contains more users than the SIGCOMM
trace and thus observed a higher rate of traffic.
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Figure 8—Percentage of 100 link setup attempts that fail
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Figure 9—Link setup time for successful attempts as we
vary the rate of background probe traffic not destined for
the target AP. Error bars indicate one standard deviation.

is able to maintain the specified rate. Each protocol queues
up to 10 messages (drop tail) if it is busy processing and
each client request is retransmitted once per second. We
consider a link setup attempt to fail if it does not complete
in 30 seconds. The client probes once for an AP with 500
keys.7

Figure 8 shows the percentage of link setup attempts that
failed. Due to the processing required by the public key

and symmetric key protocols in order to determine whether
a message is destined for the receiver, each begins to fail
when the background message rate grows. No attempts fail
when using Tryst or wifi-open. We omit the line for wifi-wpa

because its message retry behavior is different. Figure 9
shows the link setup times for the attempts that succeeded.
Note that while the symmetric key protocol is able to cope
with message rates of up to 100 messages/second before it
begins to fail, its link setup times grow to several seconds,
and impact perceived performance, even when the rate is 50
messages/second.

Contention for the medium causes Tryst, wifi-open, and
wifi-wpa to each have link setup times that grow slightly
as the background message rate increases, but their scaling

7Note that in this experiment, the client and AP drivers
ran in user level, rather than in the kernel, because when
the straw man protocols become overloaded with message
processing, the Linux kernel became unresponsive to ex-
perimental commands. This imposes a slight overhead on
message processing, but is insubstantial compared to each
protocol’s relative performance.

# keys 1 10 50 100 500 1000 10,000

time (msec) 0.08 0.49 2.3 4.7 24 47 800

Table 4—The mean time to update Tryst addresses for a
single time interval as we vary the number of keys.

behavior is gradual and roughly consistent. Tryst’s ability
to discard background messages quickly enables it to scale
gracefully. This property is important not only for dealing
with ambient discovery traffic, but also for mitigating the
impact of malicious denial of service attacks. With the public

key and symmetric key protocols, a malicious device only
needs to send a small number of messages to prevent a client
from setting up a link.

Address update time. At the beginning of each time
interval, a Tryst node precomputes the message addresses
it expects to receive to enable quick message filtering. Ta-
ble 4 shows the time it takes to compute these addresses and
update the hash table as we increase the number of keys a
device holds. A node computes two addresses per time in-
terval, per key (one for probes and one for authentication
messages). Clients, which are unlikely to have more than
100 keys, would spend only a few milliseconds each time in-
terval to update addresses, and time intervals would likely
be at least several minutes. Even APs with 10,000 clients
would spend less than 1 second.

5.4 Data Transport Performance
We now examine how well Shroud performs at deliver-

ing data packets. We begin with a description of micro-
benchmarks that break down how long Shroud takes to send,
filter, and receive packets. Then we present an analysis of
packet delivery latency and throughput when a SlyFi client
and AP are communicating in isolation. Finally, we look at
performance in the face of background traffic, and present
results describing achievable throughput both as the number
of clients managed by the AP and the amount of competing
traffic varies.

Simulated hardware encryption. Shroud’s cryptogra-
phy operations are implemented in software, which adversely
affects performance. To understand how Shroud would per-
form with hardware support, we simulate the processing
times of that hardware. As a result, we provide measure-
ments both for the software-only version, shroud-sw, as well
as for the version with hardware simulation, shroud-hw.

Since both wifi-wpa and Shroud use AES to encrypt and
MAC packets, we use wifi-wpa’s processing times as an esti-
mate for shroud-hw.8 We estimate wifi-wpa’s cryptographic
processing time (including I/O) as the difference in round
trip ping delays between wifi-wpa and wifi-open-driver. Mea-
surements suggest the time to encrypt a 1500 byte ICMP
packet is ∼16 usec and the time to encrypt a payload-free
packet is ∼14 usec. I/O overhead dominates, but there is a
small linear scaling factor as the packet size increases. Nei-
ther encryption nor MAC computation are parallelizable in
Shroud, whereas CCMP’s encryption may be parallelized in
hardware. Thus, we conservatively estimate that shroud-

8wifi-wpa uses AES counter mode for payload encryption
and AES-CBC for MAC computation, while Shroud uses
AES-CBC mode for payload encryption and CMAC (a rel-
ative of AES-CBC mode) for the MAC. Counter mode is
parallelizable, while AES-CBC is not.



send filter receive

sw hw sw hw sw hw

update addrs

(max message loss) 15 14 NA NA 2047 2003 (50)

(no message loss) 15 14 NA NA 119 117 (1)

process etext 951 16 NA NA 1541 16

process emac 740 16 NA NA 740 16

Shroud total 1821 120 32 32 3290 290

Click total 1913 215 144 144 3402 407

Table 5—Breakdown of processing times (see §3.4) for 1500
byte packets for shroud-sw (sw) and shroud-hw (hw). All
times are in microseconds. Numbers in parentheses are num-
bers of address computations.

hw would take 14 usec to encrypt a pair of addresses and
32 usec to encrypt and MAC packet payloads. To simu-
late these times, we modify our code to idle-wait for these
times instead of computing the cryptographic operations in
software. We note that shroud-hw still includes the actual
software processing time of all non-AES operations.

Micro-benchmarks. Table 5 breaks down the time to
send, filter, and receive Shroud messages. On a busy net-
work, a packet received by a client is often intended for some-
one else, so filtering packets quickly is imperative. The filter
column shows that shroud-hw’s filtering time (32 usecs) is
much faster than the theoretical minimum packet transmis-
sion time in 802.11a for a 1500 byte packet (∼225 usecs),
suggesting that a receiver could filter packets faster than
the medium could supply them.

Sender-side processing of a 1500 byte packet, shown in the
send column (215 usec), also edges out the time to trans-
mit it, and thus, shroud-hw should be capable of supporting
802.11a’s line speed. Receiver-side processing (the receive
column) from the radio takes 407 usec, which is greater
than the theoretical time to transmit, but still reasonable,
since 802.11 rates in practice are much slower (e.g., see Fig-
ure 10). When packets are lost, additional address compu-
tations must be performed after a reception. A reception
following the maximum 49 packet burst loss (for w = 50)
requires Shroud to compute and update 50 new addresses.
This takes 2003 usec compared to 117 usec for a single ad-
dress update (the case with no loss).

The cryptographic operations are much slower when im-
plemented in software than they are in hardware, and thus
the performance of shroud-sw is significantly below line speed.
Regardless, we present these results to characterize our proof-
of-concept implementation that can be used today to protect
privacy. Obviously, an engineering effort is required to make
use of hardware cryptography.

Throughput and latency. Figure 10 shows achievable
throughput for shroud-hw, shroud-sw, wifi-open, and wifi-

open-driver, measured using iperf. Shroud is implemented
in Click, so wifi-open provides a baseline against which to
evaluate its performance. While wifi-open (802.11 imple-
mented in Click) performs worse than wifi-open-driver (the
native driver implementation), the throughput degradation
of shroud-hw is comparable to wifi-wpa relative to their re-
spective baselines. Optimizing wifi-open is a subject for
future work. When sending 1500 byte packets, shroud-hw

degrades wifi-open performance by only 1.44 Mbps com-
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Figure 11—Comparison of round trip times of ICMP ping
messages for variously sized packets. Each point is the aver-
age of 1000 pings; pings that experienced link-layer packet
loss, or re-keying delays (in the case of wifi-wpa), were re-
moved.

pared to the 0.71 Mbps degradation from running wifi-wpa.
Since both Shroud and wifi-wpa use some non-parallelizable
cryptographic operations, the relative performance degra-
dation increases with packet size. shroud-sw experiences a
much larger drop in throughput, but still provides a func-
tional link (3.73 Mbps).

Figure 11 presents round trip time measurements using
ping. For 1500 byte packets, two packet payload encryptions
and decryptions take ∼60 usec in wifi-wpa and ∼130 usec in
shroud-hw; the extra time is due to address encryption. We
believe the sudden marked increase in shroud-sw between
300 and 400 byte packets is due to an inefficiency in the
Click runtime.9

Background traffic. Shroud’s design is motivated by the
requirement that background traffic must be filtered effi-
ciently. To study how well Shroud filters packets, we run
an experiment in which a client, C1, sends packets as fast
as possible to an access point, AP1. Nearby, we generate
background traffic by having another client, C2 send traffic
to another AP, AP2. We measure the throughput at AP1.
Since the number of keys AP1 manages (i.e., number of as-
sociations) and the amount of background traffic both affect
throughput, we vary both independently.

Figure 12 shows throughput measured at C1 for both the
software implementation and hardware simulation of Shroud

9Short packets get through the Click data path without a
context switch from the OS, while longer packets do not.
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and armknecht, as the number of keys at AP1 is varied. Since
Shroud can filter background packets with just a hash ta-
ble lookup, its achievable throughput is independent of the
number of keys. However, armknecht’s performance gets pro-
gressively worse as the number of keys increases. This is
because clients and APs running armknecht must try every
key they have before discarding background packets.

Figure 13, which shows throughput achieved as a func-
tion of the competing flow rate, depicts a similar effect. As
the amount of background traffic increases, throughput de-
creases for both Shroud and armknecht, but considerably
more so for armknecht. E.g., with 10 Mbps of background
traffic, throughput is 31% lower for shroud-hw than it is with
no competing traffic, but it is 72% lower for armknecht-hw.
This reduction results from a combination of two effects:
First, background traffic reduces the availability of the chan-
nel, as is evident in the throughput reduction (26%) of our
baseline, wifi-open, which performs no cryptographic oper-
ations. This affects Shroud and armknecht similarly. Sec-
ond, background traffic requires work to filter, which is much
more expensive in armknecht.

6. RELATED WORK

Private Discovery. We presented the case for private ser-
vice discovery in a previous workshop paper [22]. Although

we sketched some of the challenges in designing Tryst in [22],
this paper is the first to present its cryptographic design and
implementation.

SmokeScreen [13] is a system that privately announces
your presence to your friends. Its protocol also uses sym-
metric key cryptography to compute temporary addresses.
However, it is not a general mechanism for packet deliv-
ery and is not authenticated like Tryst. Furthermore, since
SmokeScreen uses a hash-chain to compute subsequent ad-
dresses, a device that is asleep for a while would have to com-
pute every intermediate address before obtaining the current
address to use. In contrast, Tryst simply enciphers a unique
counter value based on the time and thus requires only a
single cryptographic operation to compute the current ad-
dress. SmokeScreen tolerates this extra expense because its
addresses change very infrequently.

As discussed in §3.1, [7] presented a public key protocol
for private authenticated discovery. Since symmetric keys
are already often established between wireless clients and
services, we argue that a more efficient protocol based on
symmetric cryptography would suffice.

Encrypted 802.11 Headers. Armknecht et al. [8] pro-
pose a way to encrypt the 802.11 header that tries to address
many of the same goals as Shroud. Although they compute
per-packet addresses like Shroud, there are four key differ-
ences that contrast our work. First, to deal with message
loss their proposal requires a receiver to try every key it
has to decode packets with no matching address. Shroud
instead maintains the w subsequent addresses so such a sce-
nario is extremely unlikely. As our evaluation demonstrated,
Shroud is substantially more efficient in the face of compet-
ing background traffic. Second, unlike SlyFi , their proposal
is not a complete link layer, as it does not address service
discovery, broadcast, higher layer bindings, etc. Finally, un-
like their proposal, we have demonstrated SlyFi with a real
implementation.

Singelée and Preneel [27] also propose an addressing scheme
similar to Shroud using a hash-chain instead of an AES
counter. Unlike SlyFi , this proposal is not a complete link
layer and it did not include an implementation.

Pseudonyms. Gruteser et al. [16] and Jiang et al. [18]
present 802.11 pseudonym schemes where users change MAC
addresses each session or when idle. SlyFi enables address
changes per packet, which are often desired to mitigate pro-
filing of packet sequences. In addition, unlike SlyFi , neither
scheme obscures names in discovery or link setup messages.

7. CONCLUSION
We presented the design and evaluation of SlyFi , an identi-

fier-free 802.11 link layer that obfuscates all transmitted bits,
including addresses. We showed how a link layer could use
two mechanisms, Tryst and Shroud, to perform this obfus-
cation while still achieving efficient discovery, link establish-
ment, and data transport, and without sacrificing other cru-
cial link layer functions such as higher layer name binding.
Our evaluation showed that SlyFi performs comparably to
WPA and performs substantially better than previous tech-
niques.
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